Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway.

نویسندگان

  • E B Stevens
  • B S Shah
  • R D Pinnock
  • K Lee
چکیده

Although activation of G protein-coupled inward rectifying K+ (GIRK) channels by Gi/Go-coupled receptors has been shown to be important in postsynaptic inhibition in the central nervous system, there is also evidence to suggest that inhibition of GIRK channels by Gq-coupled receptors is involved in postsynaptic excitation. In the present study we addressed whether the Gq-coupled receptors of the bombesin family can couple to GIRK channels and examined the mechanism by which this process occurs. Different combinations of GIRK channel subunits (Kir3.1, Kir3.2, and Kir3.4) and bombesin receptors (BB1 and BB2) were expressed in Xenopus oocytes. In all combinations tested GIRK currents were reversibly inhibited upon application of the bombesin-related peptides, neuromedin B or gastrin-releasing peptide in a concentration-dependent manner. Incubation of oocytes in the phospholipase C inhibitor U73122 or the protein kinase C (PKC) inhibitors chelerythrine and staurosporine significantly reduced the inhibition of GIRK currents by neuromedin B, whereas the Ca2+ chelator, BAPTA-AM had no effect. The involvement of PKC was further demonstrated by direct inhibition of GIRK currents by the phorbol esters, phorbol-12,13-dibutyrate and phorbol-12-myristate-13-acetate. In contrast, the inactive phorbol ester 4alpha-phorbol and protein kinase A activators, forskolin and 8-bromo cAMP did not inhibit GIRK currents. At the single-channel level, direct activation of PKC using phorbol ester phorbol-12, 13-dibutyrate caused a dramatic reduction in open probability of GIRK channels due to an increase in duration of the interburst interval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A recombinant inwardly rectifying potassium channel coupled to GTP- binding proteins

GTP-binding (G) proteins have been shown to mediate activation of inwardly rectifying potassium (K+) channels in cardiac, neuronal and neuroendocrine cells. Here, we report functional expression of a recombinant inwardly rectifying channel which we call KGP (or hpKir3.4), to signify that it is K+ selective, G-protein-gated and isolated from human pancreas. KGP expression in Xenopus oocytes resu...

متن کامل

Positive and Negative Coupling of the Metabotropic Glutamate Receptors to a G Protein–activated K+ Channel, GIRK, in Xenopus Oocytes

Metabotropic glutamate receptors (mGluRs) control intracellular signaling cascades through activation of G proteins. The inwardly rectifying K+ channel, GIRK, is activated by the beta gamma subunits of G proteins and is widely expressed in the brain. We investigated whether an interaction between mGluRs and GIRK is possible, using Xenopus oocytes expressing mGluRs and a cardiac/brain subunit of...

متن کامل

Identification of Selective Agonists and Antagonists to G Protein-Activated Inwardly Rectifying Potassium Channels: Candidate Medicines for Drug Dependence and Pain

G protein-activated inwardly rectifying K(+) (GIRK) channels have been known to play a key role in the rewarding and analgesic effects of opioids. To identify potent agonists and antagonists to GIRK channels, we examined various compounds for their ability to activate or inhibit GIRK channels. A total of 503 possible compounds with low molecular weight were selected from a list of fluoxetine de...

متن کامل

Inhibition of G protein-activated inwardly rectifying K+ channels by the antidepressant paroxetine.

Paroxetine is commonly used as a selective serotonin reuptake inhibitor for the treatment of depression and other psychiatric disorders. However, the molecular mechanisms of the paroxetine effects have not yet been sufficiently clarified. Using Xenopus oocyte expression assays, we investigated the effects of paroxetine on G protein-activated inwardly rectifying K+ (GIRK) channels, which play an...

متن کامل

Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system.

In this study, we focused on the pharmacological characterization of cannabinoid receptor coupling to G protein-gated inwardly rectifying potassium (GIRK) channels. Cannabinoids were tested on Xenopus laevis oocytes coexpressing the CB(1) receptor and GIRK1 and GIRK4 channels (CB(1)/GIRK1/4) or the CB(2) receptor and GIRK1/4 channels (CB(2)/GIRK1/4). WIN 55,212-2 enhanced currents carried by GI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 55 6  شماره 

صفحات  -

تاریخ انتشار 1999